|
Terms |
Error |
Output Layer Delta |
Regression |
$$T = \mathbb{R}^{N\times K}$$ |
$$\frac{1}{NK} \sum_{n=1}^N \sum_{k=1}^K (T_{n,k} - Y_{n,k})^2$$ |
$$\frac{-2}{NK} (T_{n,k} - Y_{n,k}) \\
\text{ for each } n \text{ and } k \text{ or, }\\ \frac{-2}{NK} (T - Y)$$ |
Classification |
$$\begin{align*}
T &= \mathbb{C}^{N\times 1}\\
\mathit{Tiv}^{N\times K} &= \text{indvars}(T)\\
\mathit{Ysm}^{N\times K} &= \frac{e^Y}{\sum_{k=1}^K e^{Y_{*,k}}}
\end{align*}$$ |
$$\begin{align*}
-\log \left( (\prod_{n=1}^N \prod_{k=1}^K \mathit{Ysm}_{n,k}^{\mathit{Tiv}_{n,k}})^{\frac{1}{NK}} \right )\\
= -\frac{1}{NK} \sum_{n=1}^N \sum_{k=1}^K \mathit{Tiv}_{n,k} \log(\mathit{Ysm}_{n,k})
\end{align*}$$ |
$$-\frac{1}{NK} (\mathit{Tiv}_{n,k} - \mathit{Ysm}_{n,k}) \\ \text{ for each } n \text{ and } k \text{ or, }\\ -\frac{1}{NK} (\mathit{Tiv} - \mathit{Ysm})$$ |
Reinforcement Learning |
$$\mathit{T}_n = r_{n+1} + \gamma Y_{n+1} \\ \text{ for sequential samples } n \\ \text{ where } Y_{n+1} \text{ is } Q_{n+1} \text{ value.}$$ |
$$\frac{1}{N} \sum_{n=1}^N (\mathit{T}_n - Y_n)^2$$ |
$$\frac{-2}{N} (\mathit{T}_n - Y_n) \\ \text{ for each } n \text{ or, }\\ \frac{-2}{N} (\mathit{T} - Y)$$ |